
A novel pattern-based edit distance for
automatic log parsing:

Implementation and reproducibility notes

Maxime Raynal1,2, Marc-Olivier Buob1, and Georges Quénot2

1 Nokia Bell Labs, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble France

Abstract. This paper presents a detailed and reproducible description
of the algorithms and experiments published in our ICPR paper (A novel
pattern-based edit distance for automatic log parsing). It discusses the im-
plementation, our methodology, our experimental setup, the considered
performance metrics and the influence of the main parameters of the
compared algorithms.

Keywords: Edit distance · log clustering · dynamic programming · re-
producible research.

1 Introduction

Unstructured data is ubiquitous, and its lack of structure makes it difficult to
analyze. As a sequel, it often ends up being unused [19]. In practice, processing
unstructured data forces to develop dedicated parsers to convert it to a more
convenient and structured format. This problem arises in network management,
especially when analyzing system logs3 or system command outputs. Unfortu-
nately, developing parsers is often tedious, time consuming and error prone.

To automate log parsing, it is required to better understand the structure
of the file that must be processed. In the literature, grouping the lines of a log
having the same underlying structure and semantics is often referred to as the
log clustering (and sometimes, log parsing) problem. To solve this problem, we
propose in [18] a novel pattern-based distance and a clustering algorithm built
on top of it. As a result, our clustering algorithm partitions input log lines so
that each group of lines conforms to a same underlying structure (template). It
worth noting that the templates are not known a priori and are inferred during
the log clustering step.

This companion paper details how to reproduce our experiments. Section 2
explains some of our implementation choices. Section 3 describes how to install,
setup and use our module through a minimal example. Section 4 recalls the main
steps of our algorithm and details how to tune each hyper-parameter. Section 5
presents how we compared though experiments our proposal against two state of
the art solutions and discusses the influence of each hyper parameter. Section 6
concludes the paper.

3 Logs are text files, where each line usually corresponds to a timestamped message.

2 Raynal, Buob, Quénot

2 Implementation considerations

The pattern clustering code architecture involves C++ and Python 3 code.
The core algorithm is implemented in C++, while the Python wrapping eases its
usage. Implementing the core algorithm in C++ improves the performance of the
pattern clustering by a factor of 100 compared to a pure Python implementation,
and hence allows to process larger log files. The Python wrapping is realized
thanks to libpython and the Boost.python libraries [1]. As the module includes
a C++ core, once compiled, the pattern clustering module only works for the
python version corresponding to the libpython and Boost.python libraries we
linked to.

We could have restricted to libpython, but we decided to also rely on the
Boost library for two reasons. First, Boost.python allows to keep the C++ core
independent from the implementation details imposed by libpython. Second,
wrapping C++ objects usable from the python interpreter imposes to build the
appropriate libpython objects. This task is significantly eased by using the
Boost.python library.

In our case, the pattern distance and pattern clustering primitives take
in parameter pattern automata and vectors [18]. All these variables are rep-
resented C++-side by using vectors. As vectors are not handy to craft au-
tomata, we require an intermediate automaton-like class. We could have used
Boost.graph, but for sake of simplicity, we kept the graph aspects in the Python
part of module.

To do so, we decided to use the pybgl Python module [10] for two reasons.
First, pybgl provides an automaton class that can easily extended to implement
pattern automata. Second, it provides all the primitives required to build an
automaton from an arbitrary regular expression. Once the pattern automata
are built, the Python/C++ binding allows to transparently convert them to
C++ vectors (as well as Python lists), and conversely, to transform C++ results
(vectors) to Python lists.

3 Installation steps

The installation steps are described in the wiki of the pattern clustering

repository [9]. The installation of the libboost-dev and libpython3-dev li-
braries is explained. Unfortunately, a PIP-based installation is not yet avail-
able as it would require to compile a version for every target operating system
and Python version. Doing so is not straightforward, even using projects like
ManyLinux [8], and that is why we decided to provide only a source-based in-
stallation.

Once installed, the end-user can run the minimal example provided in Fig-
ure 1. To obtain more user-friendly results, we refer the user to the Jupyter
notebooks provided in the pattern clustering repository.

pattern-based edit distance: implementation notes 3

1 from pattern_clustering import pattern_clustering

2

3 FILENAME = "/var/log/Xorg .0.log" # Or any arbitrary log file

4 with open(FILENAME) as f:

5 LINES = [line.strip() for line in f.readlines ()]

6

7 print(pattern_clustering(LINES))

Fig. 1: Minimal example using the pattern clustering function.

4 Pattern clustering usage

This section presents the parameters of our module and more advanced usages
than the one provided in Figure 1. It also discusses how to tune each hyper-
parameter if the default settings are not satisfactory.

As explained in [18], the pattern clustering primitive takes the following
parameters:

– lines: an iterable object (e.g., a list) of strings corresponding to each
input log line. As the pattern clustering algorithm is greedy, one could pass
an iterator allowing to process an input log file in a streaming fashion.

– map name dfa: a dictionary mapping pattern names with the corresponding
deterministic finite automaton (DFA). In [18], this corresponds to the pattern
collection denoted by P. We detail this parameter in Section 4.1.

– densities: the density of each pattern is a value between 0 and 1 reflecting
how strict is a pattern. In [18], this corresponds to results returned by the
density function ρ. The vector of densities offers the opportunity to use
alternative density functions.

– threshold: this value, between 0 and 1, indicates how close must be the
elements involved in a cluster from the cluster’s representative. In [18], this
corresponds to D. Small values tend to increase the number of output clus-
ters.

– use async: a Boolean indicating whether the pattern clustering computa-
tions must be parallelized.

– make mg: the strategy used to build pattern automata from string according
to P. The end-user must keep the default value to conform to our reproduce
the pattern automata simplifications and experiments presented in [18].

The value returned by the pattern clustering primitive is detailed in Sec-
tion 4.2. Finally, Section 4.3 presents two ways to perform the clustering.

4.1 Pattern collection

In our implementation, each pattern is identified by a string. Some patterns are
predefined in our module and one can get the whole list of supported patterns
by running the following snippet:

4 Raynal, Buob, Quénot

1 from pattern_clustering import get_pattern_names

2 print(get_pattern_names ())

Fig. 2: Snippet illustrating how to list the predefined patterns.

1 from pattern_clustering import *

2 from pybgl.regexp import compile_dfa

3

4 MAP_NAME_DFA = make_map_name_dfa ()

5 MAP_NAME_DFA["letters"] = compile_dfa("[a-zA-Z]+")

6 print(pattern_clustering(LINES , map_name_dfa=MAP_NAME_DFA))

Fig. 3: Snippet illustrating how to tune the pattern collection.

By default, the pattern collection involves most of them. One may tune this
collection by discarding some keys, modifying some automata, or inject cus-
tom patterns. The example below shows how to inject a custom pattern named
letters in the default collection. In the details, the compile dfa processes the
input regular expression using the Shunting Yard algorithm [12]. By using the
Thompson transformation [20], it progressively builds a non-deterministic finite
automaton (NFA). Finally, the NFA is transformed to its corresponding minimal
DFA using the Moore algorithm [17].

4.2 Returned value

Once the clustering is computed, each input line is remapped with the appro-
priate cluster. The pattern clustering returns a list where each element rep-
resents a cluster. The ith element of this list gathers the line number of the lines
belonging to the ith cluster.

4.3 Dropping duplicated pattern automata

Our module allows to drop duplicated pattern automata. This feature is relevant
if the end-user considers that every line conforming to the same pattern automa-
ton must always fall in the same cluster. Dropping duplicated pattern automata
limits the number of elements to cluster and thus accelerates the processing.

However, we did not use this feature in our experiments. Indeed, we observed
that it could affect the quality of the clustering, as in some situations, two lines
conforming to the same pattern automaton should fall in distinct clusters.

5 Experimental setup

In [18], we compare the pattern clustering against two state-of-the-art algo-
rithms, namely Drain [14] and LogMine [13]. Our experimental setup is quite
similar to the one described in [21]. This section details the main differences.

pattern-based edit distance: implementation notes 5

5.1 Drain and LogMine integration

The standard implementations of Drain [3] and LogMine [7] do not output the
cluster assigned to each input log line. This information is required to compute
the accuracy (see Section 5.5). That is why we have forked these standard imple-
mentations and adapted their outputs [2,6]. Our modifications are minor, and
thus do not affect the results and only induce negligible time overhead.

5.2 Loghub dataset

We perform our experiments on the Loghub dataset. It involves 16 log files de-
scribed in detail in [15] (size, number of messages, labeling, etc.). The Loghub
repository [5] provides a small excerpt of each log file, whereas the Zenodo repos-
itory [11] contains the complete logs.

5.3 Ground truth

The Loghub repository [5] provides for each log file the corresponding ground
truth. A ground truth maps templates (i.e., a string involving some wildcards
denoted by <*>) with the corresponding lines of log.

It’s worth noting that each ground truth has been manually obtained. During
our experiments, we have observed they contain several inconsistencies. In par-
ticular, we have found some clusters that have no reason to be split. For example,
the original Android ground truth distinguishes the three following templates:

– animateCollapsePanels:flags=<*>,

force=false, delayed=false, mExpandedVisible=false

– animateCollapsePanels:flags=<*>,

force=false, delayed=false, mExpandedVisible=true

– animateCollapsePanels:flags=<*>,

force=true, delayed=true, mExpandedVisible=true

... while it would be more natural to merge them in a single template:

– animateCollapsePanels:flags=<*>,

force=<*>, delayed=<*>, mExpandedVisible=<*>

We have checked each ground truth and fixed all the inconsistencies we have
found. The original and the fixed versions of the ground truths are made available
in [4]. One may easily compare them using a diff-like utility. All our experiments
are performed using the fixed ground truths.

5.4 Experimental parameters

The three considered clustering algorithms mainly require two parameters, namely
the pattern collection and the clustering threshold.

For each dataset, our experiments consider two pattern collections:

6 Raynal, Buob, Quénot

– Minimal collection. Our initial motivation is to design a generic log clustering
tool, and thus this collection only includes universal patterns (i.e., patterns
like dates, times, network addresses, numerical values).

– Specific collections. In [21], the authors tailor dataset-dependant to see how
good each algorithm with a high prior knowledge could be. As a sequel, the
resulting collection is highly dependent on the input dataset and requires
significant end-user intervention.

To get a full benchmark, our experiments compare the results obtained for each
dataset with the specific and the minimal collections.

As done in [21], the threshold is calibrated by running the experiments with
several values. We keep the best results obtained w.r.t the tested thresholds.

To make our experiments easily reproducible, all the simulation parameters
are made available in our repository. We also provide notebooks allowing to run
our experiment pipeline.

5.5 Accuracy

The accuracy of each clustering algorithm is evaluated by computing two per-
formance metrics (namely, the parsing accuracy and the adjusted Rand index).
Both require a ground truth (see Section 5.3).

The parsing accuracy has been introduced in [21]. More formally, given two
partitions C1, C2 of a set E, the pattern accuracy PA is defined by:

PA(C1, C2) =
1

|E|
∑

C∈C1∩C2

|C|

By definition, this metric only rewards clusters that exactly matches those listed
in the ground truth. As a sequel, if a cluster is slightly different in the results
and in the ground truth, this is not rewarded by PA; and the bigger the cluster,
the bigger the penalty. This means that algorithms returning a clustering with
small errors may have a very low parsing accuracy. Conversely, slight updates
modifying a large cluster in the ground truth drastically change the parsing
accuracy.

The adjusted Rand index [16] is designed to be less sensitive to small vari-
ations and hence alleviates all the limitations inherent to the parsing accuracy.
Intuitively, it is obtained by counting the number of correct and incorrect pair-
wise assignments and is readjusted depending on the number of clusters and
their respective size.

6 Conclusion

This companion paper shows how to reproduce the experiments presented in [18]
and highlights some of its technical contributions. First, it details the code op-
timizations (core algorithm written in C++, parallelization) made to run our
algorithm on larger logs. Second, it shows the effort made to package the code,

pattern-based edit distance: implementation notes 7

so that it is easy to install and use for the end-user. Third, it provides all the
technical material needed to reproduce our experiments, and hence allows re-
searchers to compare their proposal against LogMine, Drain and the pattern
clustering algorithm. Fourth, it has been the opportunity to enhance the ground
truths provided by the Loghub dataset. For all these reasons, we hope that our
module will be reused in the future works dealing with log clustering and auto-
matic parsing.

References

1. Boost C++ library, https://www.boost.org/
2. Drain 3 forked repository, https://github.com/raynalm/Drain3
3. Drain 3 original repository, https://github.com/IBM/Drain3
4. Ground truth templates, https://github.com/nokia/pattern-clustering/

tree/main/logs
5. Loghub: A large collection of system log datasets for AI-powered log analytics,

https://github.com/logpai/loghub
6. Logmine forked repository, https://github.com/raynalm/logmine
7. Logmine original repository, https://github.com/trungdq88/logmine/
8. ManyLinux GitHub repository, https://github.com/pypa/manylinux
9. Pattern clustering GitHub repository, https://github.com/nokia/

pattern-clustering
10. PyBGL GitHub repository, https://github.com/nokia/pybgl
11. Zenodo repository containing the full Loghub logs, https://zenodo.org/record/

3227177
12. Dijkstra, E.W.: Algol 60 translation: An algol 60 translator for the x1 and making

a translator for algol 60. Stichting Mathematisch Centrum. Rekenafdeling (MR
34/61) (1961)

13. Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., Mueen, A.: Logmine: Fast
pattern recognition for log analytics. In: Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. pp. 1573–1582 (2016)

14. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS).
pp. 33–40. IEEE (2017)

15. He, S., Zhu, J., He, P., Lyu, M.R.: Loghub: A large collection of system log datasets
towards automated log analytics. arXiv preprint arXiv:2008.06448 (2020)

16. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1), 193–
218 (1985)

17. Moore, E.F., et al.: Gedanken-experiments on sequential machines. Automata stud-
ies 34, 129–153 (1956)

18. Raynal, M., Buob, M.O., Quénot, G.: A novel pattern-based edit distance for
automatic log parsing. In: ICPR 2022 (2022)

19. Terrizzano, I.G., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: The chal-
lenging yourney from the wild to the lake. In: CIDR (2015)

20. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11(6), 419–422 (1968)

21. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks
for automated log parsing. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). pp. 121–130.
IEEE (2019)

https://www.boost.org/
https://github.com/raynalm/Drain3
https://github.com/IBM/Drain3
https://github.com/nokia/pattern-clustering/tree/main/logs
https://github.com/nokia/pattern-clustering/tree/main/logs
https://github.com/logpai/loghub
https://github.com/raynalm/logmine
https://github.com/trungdq88/logmine/
https://github.com/pypa/manylinux
https://github.com/nokia/pattern-clustering
https://github.com/nokia/pattern-clustering
https://github.com/nokia/pybgl
https://zenodo.org/record/3227177
https://zenodo.org/record/3227177

	A novel pattern-based edit distance for automatic log parsing: Implementation and reproducibility notes

