
Intro to logic INF432: CheatSheet
Strict Formula (SF)
>, ⊥ and x are SF.
If A is a SF then ¬A is a SF.
If A and B are strict formulae, then (B ◦ C) is a SF.

Priority formula (PF)
>, ⊥ and x are PF.
If A is a PF then ¬A is a PF.
If A is a PF then (A) is a PF.
If A and B are PF then A ◦B is a PF

Priority order of the connectors
By decreasing order: ¬,∧,∨,⇒,⇔

Connective precedence
Left precedence for ∨,∧,⇔

meaning A ◦B ◦ C = (A ◦B) ◦ C
!4 Right precedence for ⇒

meaning A⇒ B ⇒ C = A⇒ (B ⇒ C)

Length of a formula
The length of A is denoted l(A). It represents the
number of symbols used to write A.

Size of a formula
The size of A is denoted |A|.
|>| = |⊥| = |p| = 0
|¬A| = 1 + |A|
|(A)| = |A|
|A ◦B| = 1 + |A|+ |B|

Assignment
An assignment v is a function from the set of variables
of the formula into {0, 1}.
We can write it like this: v =< p = 0, q = 1 >.
[A]v denotes the truth value of the formula A for the
assignment v.

Equivalence
Two formulae A and B are equivalent (denoted
A ≡ B) if and only if they have the same value for
every assignment.

Valid formula
A formula is a valid (denoted |= A) if and only if it
has value 1 for every assignment.
A valid formula is a tautology.

Model for a formula
An assignment v such that [A]v = 1 is a model for A.
An assignment v such that [A]v = 0 is a counter-model
for A.

Model for a set of formulae
An assignment v is a model for a set of formulae
{A1, . . . , An} if and only if it is a model for Ak for any
k ∈ {1, . . . , n}

Satisfiability
A (set of) formula(e) is satisfiable if it admits at least
one model.
A (set of) formula(e) is unsatisfiable if it is not
satisfiable.

In short
satisfiable → at least one model.
unsatisfiable → 0 model.
valid → 0 counter-model.
invalid → at least one counter-model.

Logical consequence (entailment)
The formula A is a consequence of the set of formulae
Γ if and only if every model of Γ is a model of A.
It is denoted A |= Γ.

Important property
Let A1, . . . , An, B be n + 1 formulae. The three
following formulations are equivalent:
(i): A1, . . . , An |= B
(ii): the formula (A1 ∧A2 ∧ . . . ∧An)⇒ B is valid.
(iii): (A1 ∧A2 ∧ . . . ∧An)⇒ ¬B is unsatisfiable.

Propositional compactness
A set of propositional formulae has a model if an only
if every finite subset of it has a model.

Properties of disjunction and conjunction
Associativity: (A ∨B) ∨ C ≡ A ∨ (B ∨ C)
Commutativity: A ∨B ≡ B ∨A
Idempotence: A ∨A ≡ A
The 3 properties above also hold for ∧
p ∨ ¬p ≡ 1 ; p ∨ 1 ≡ 1 ; p ∨ 0 ≡ p
p ∧ ¬p ≡ 0 ; p ∧ 1 ≡ p ; p ∧ 0 ≡ 0

Distributivity
∨ distributes over ∧:
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
∧ distributes over ∨:
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

De Morgan laws
¬(p ∨ q) ≡ ¬p ∧ ¬q ; ¬(p ∧ q) ≡ ¬p ∨ ¬q

Simplification laws
p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p
p ∨ (¬p ∧ q) ≡ p ∨ q
p ∧ (¬p ∨ q) ≡ p ∧ q

Substitution
A substitution σ is a function mapping variables to
formulae.
We denote by Aσ the formula A where all variables x
are replaced by σ(x).

Support of a substitution
The support of a substitution σ is the set of variables
x such that xσ 6= x.
A finite support substitution σ is denoted
< x1 := A1, . . . , xn := An

Property of a substitution
Let v be a truth assignment and σ a substitution.
Let w be the assignment x→ [σ(x)]v
Then we have [Aσ]v = [A]w for any formula A.
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Literal, monomial & clause
A literal is a variable or its negation.
A monomial is a conjunction of literals.
A clause is a disjunction of literals.

Normal form
A formula is in normal form if it contains only the op-
erators ∨,∧ and ¬, and if ¬ is only applied to variables.

Theorem
Every formula admits an equivalent normal form
Computing a normal form
Step 1: equivalence elimination
replace A⇔ B by (¬A ∨B) ∧ (¬B ∨A)

or by (A ∧B) ∨ (¬A ∧ ¬B)
Step 2: implication elimination
replace A⇒ B by ¬A ∨B
Step 3: shift negations towards variables
replace ¬¬A by A
replace ¬(A ∨B) by ¬A ∧ ¬B
replace ¬(A ∧B) by ¬A ∨ ¬B

Disjunctive normal form (DNF)
A formula is in DNF if and only if it is a disjunction
of monomials.
To obtain a DNF, distribute the conjunctions over the
disjunctions.
The DNF highlights the models of the formula.

Conjunctive normal form (CNF)
A formula is in CNF if and only if it is a conjunction
of clauses.
To obtain a DNF, distribute the disjunctions over the
conjunctions.
The DNF highlights the counter-models of the formula.

Boolean Algebra
A boolean algebra is a set of:
At least two elements, 0 and 1.
Three operations, complement (x̄), sum (+)
and product (·) which respect the following:
The sum is associative, commutative, with neutral

element 0
The product is associative, commutative, with

neutral element 1
The product is distributive over the sum
The sum is distributive over the product
The negation laws: x+ x̄ = 1 and x · x̄ = 0

Properties of a boolean algebra
∀x,∃!y such that x+ y = 1 and x · y = 0
1̄ = 0 ; 0̄ = 1 ; ¯̄x = x ; x · x = x+ x = x
x+ 1 = 1 ; x · 0 = 0

¯x · y = x̄+ ȳ ; ¯x+ y = x̄ · ȳ

Boolean function
A boolean function is a function such that its argu-
ments and result belong to the set B = {0, 1}

Method: making a proof by induction
It is done in 4 steps:
Define the induction hypothesis (hypothèse de récur-

rence) H(n)
Prove that the initial case is true (for instance prove

that H(0) is true)
Prove that if H(k) is true for all k ≤ n, then H(n+1)

is true
Conclude

Example
Prove that any formula that uses only one variable x
and the connectors ∨ and ∧ is equivalent to a formula
of size 0.
We will prove this statement by induction on the size
of the formula.
The first thing is to have an intuition of why this is
true. We know that x ∨ x = x ∧ x = x, and that
|x| = 0, so we will prove that these formulas are
equivalent to x, to > or to ⊥.

Step 1: define the induction hypothesis
With n ≥ 0, let H(n) be: "Any formula of size n that
uses only one variable x and the connectors ∨ and ∧
is equivalent to a formula of size 0"

Step 2: Prove the initial case
Let A be a formula such that |A| = 0 and A uses only
one variable x and the connectors ∨ and ∧.
Then we have A = A, with |A| = 0, so H(0) is true.

Step 3: Prove that if H(k) is true for all k ≤ n, then
H(n+ 1) is true
Let n ∈ N∗. We suppose that for all k ≤ n, H(k) is
true.
Let A be a formula such that |A| = n + 1 and A uses
only one variable x and the connectors ∨ and ∧.
Since |A| > 0, we have A = B ∨ C or B ∧ C.
If A = B ∨ C, then |A| = 1|B| + |C|, so |B| ≤ n and
C ≤ n
By induction, we know that B and C are both
equivalent to a formula of size 0, meaning B ≡ > or
B ≡ ⊥ or B ≡ x, and same for C).
Since we know that ⊥∨ x = x, ⊥∧ x = ⊥, >∨ x = >,
> ∧ x = x, x ∨ x = x ∧ x = x, we can see that in all
cases, we will have A ≡ > or A ≡ ⊥ or A ≡ x.
So H(k) true for all k ≤ n⇒ H(n+ 1).

Step 4: Conclude
We have proved by induction that for all n ∈ N,H(n)
is true. So any formula that uses only one variable x
and the connectors ∨ and ∧ is equivalent to a formula
of size 0
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Vocabulary and Notations
A literal is a variable or its negation.
Given a clause A, we denote by s(A) the set of its
literals.
For instance, s(q̄ + p+ r + p̄+ r) = {q̄, p, r, p̄}
Since we identify a clause by the set of its literals, we
can say that:

• A literal is a member of a clause.

• A clause A is included in a clause B (if s(A) ⊆
s(B))

• Two clauses A and B are equal (if s(A) = s(B))

Given a literal L, we denote by Lc the negation of L
For instance, xc = x̄ and x̄c = x

Resolvent
Let A and B be two clauses.
The clause C is a resolvent of A and B if and only if
there exists a literal L such that:

L ∈ A, Lc ∈ B, and s(C) = (A \ {L}) ∪ (B \ {Lc})

We denote C is a resolvent of A and B by A B
C We

then say that C is generated by A and B, and that A
and B are the parents of clause C.

Resolution Proof
Let Γ be a set of clauses and C a clause. A proof of C
starting from Γ is a list of clauses such that:

• Every clause of the proof is either a member of
Γ or a resolvent of two clauses already obtained

• Ending with C

We then say that the clause C is deduced from Γ (or
alternatively, that Γ yields C, or that Γ proves C),
denoted Γ |= C.
The size of the proof is the number of lines in it.

Resolution algorithms
We study two resolution algorithms in this course: the
complete strategy algorithm and the DPLL algorithm.
In this cheatsheet, only the DPLL algorithm will be
detailed, since it is basically an improvement on the
complete strategy, and is better in every regards.
Reduction of a set of clauses
To reduce a set of clauses, we remove all the valid
clauses and the clauses that contain another clause.
A valid clause is a clause containing a literal and its
negation
A clause contains another clause if the set of it literals
contains the set of literals of the other
The reduction phase preserves the satisfiability of the
set of clauses.

DPLL algorithm
It is named after Davis, Putnam, Logemann and
Loveland, who designed and refined it in the 60’.
It indicates whether a set of clauses is satisfiable or
not, and exhibits a model in the former case.

3


