Ex 13

We simplify the formula using the identity $x \vee \neg x \wedge y = x \vee y$

$$(a \lor b) \land (\neg b \lor c) \Rightarrow a \lor c = \neg((a \lor b) \land (\neg b \lor c)) \lor a \lor c$$
$$= \neg(a \lor b) \lor \neg(\neg b \lor c) \lor a \lor c$$
$$= (\neg a \land \neg b) \lor (\neg \neg b \land \neg c) \lor a \lor c$$
$$= a \lor (\neg a \land \neg b) \lor c \lor (\neg c \land b)$$
$$= a \lor a \lor c \lor b$$
$$= a \lor c \lor \neg b \lor b$$
$$= a \lor c \lor 1$$
$$= 1$$

Ex 16

Reminder: given an operator *, we say that * is:

- commutative if for any x, y, x * y = y * x.
- associative if for any x, y, z, (x * y) * z = x * (y * z).
- idempotent if for any x, x * x = x.
- transitive if for any x, y, z, x * y and y * z implies x * z.

Idempotence

x	$x \Rightarrow x$	$x \Leftrightarrow x$
0	1	1
1	1	1

According to the truth table, \Rightarrow and \Leftrightarrow are not idempotent.

Communitativity

x	y	$x \Rightarrow y$	$y \Rightarrow x$	$x \Leftrightarrow y$	$y \Leftrightarrow x$	
0	0	1	1	1	1	
0	1	1	0	0	0	
1	0	0	1	0	0	
1	1	1	1	1	1	

According to the truth table, \Rightarrow is not commutative, but \Leftrightarrow is.

Associativity

x	y	z	$x \Rightarrow (y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$	$x \Leftrightarrow (y \Leftrightarrow z)$	$(x \Leftrightarrow y) \Leftrightarrow z$	
0	0	0	1	0	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	1	1	0	0	
1	0	0	1	1	1	1	
1	0	1	1	1	0	0	
1	1	0	0	0	0	0	
1	1	1	1	1	1	1	

According to the truth table, \Rightarrow is not associative but \Leftrightarrow is.

Transitivity

x	y	z	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow z$	$x \Leftrightarrow y$	$y \Leftrightarrow z$	$x \Leftrightarrow z$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	0
0	1	0	1	0	1	0	0	1
0	1	1	1	1	1	0	1	0
1	0	0	0	1	0	0	1	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	1	1	1	1

According to the truth table, \Rightarrow and \Leftrightarrow are transitive.

Ex 23

Transforming $\neg(a \Leftrightarrow b) \lor (b \land c) \Rightarrow c$ in **DNF.**

$$\begin{array}{rcl} \neg(a \Leftrightarrow b) \lor (b \land c) \Rightarrow c & \equiv & \neg((a \Rightarrow b) \land (b \Rightarrow a)) \lor (b \land c) \Rightarrow c \\ & \equiv & \neg((\neg a \lor b) \land (\neg b \lor a)) \lor (b \land c) \Rightarrow c \\ & \equiv & ((\neg a \lor b) \land (\neg b \lor a)) \lor (b \land c)) \lor c \\ & \equiv & (((\neg a \land \neg b) \lor (b \land a)) \land (\neg b \lor \neg c)) \lor c \\ & \equiv & (((\neg a \land \neg b) \lor (b \land a)) \land (\neg b \lor \neg c)) \lor c \\ & \equiv & (((\neg a \land \neg b) \lor (b \land a)) \lor c) \land (\neg b \lor \neg c \lor c) \\ & \equiv & \neg a \land \neg b \lor a \land b \lor c \end{array}$$

Any model of this formula must respect one of the three following conditions:

- a = 1 and b = 1.
- a = 0 and b = 0.
- *c* = 1.

Transforming $(a \Rightarrow b) \land (b \Rightarrow \neg a) \land (\neg a \Rightarrow b) \land (b \Rightarrow a)$ in **DNF.**

$$(a \Rightarrow b) \land (b \Rightarrow \neg a) \land (\neg a \Rightarrow b) \land (b \Rightarrow a) \equiv (\neg a \lor b) \land (\neg b \lor \neg a) \land (a \lor b) \land (\neg b \lor a) \\ \equiv \neg a \land a \\ \equiv 0$$

This formula is a contradiction, thus it has no model.

Ex 27

Notation: *a*: Aha is a Tame, *b*: Beeby is a Tame.

"Aha says: at least one of us is a Lame" We can represent this assertion (the fact that Aha says that one of them is a Lame) by:

 $a \Leftrightarrow \neg a \vee \neg b$

. This formula is equivalent to $a \wedge \neg b$ (the simplification of the formula is left as an exercice for the reader). Hence, we conclude that Aha is a Tame, and Beeby is a Lame.

"Aha says: at most one of us is a Lame" We can represent this assertion by

 $a \Leftrightarrow a \lor b$

, which is equivalent to $a \vee \neg b$. So we cannot conclude.

"Aha says: both of us are in the same tribe" This assertion is equivalent to $a \Leftrightarrow (a \Leftrightarrow b)$. We can reduce this formula to its normal form, b. So we conclude that we know that Beeby is a Tame. We cannot conclude for Aha.