Ex 13

We simplify the formula using the identity $x \vee \neg x \wedge y=x \vee y$

$$
\begin{aligned}
(a \vee b) \wedge(\neg b \vee c) \Rightarrow a \vee c & =\neg((a \vee b) \wedge(\neg b \vee c)) \vee a \vee c \\
& =\neg(a \vee b) \vee \neg(\neg b \vee c) \vee a \vee c \\
& =(\neg a \wedge \neg b) \vee(\neg \neg b \wedge \neg c) \vee a \vee c \\
& =a \vee(\neg a \wedge \neg b) \vee c \vee(\neg c \wedge b) \\
& =a \vee \neg b \vee c \vee b \\
& =a \vee c \vee \neg b \vee b \\
& =a \vee c \vee 1 \\
& =1
\end{aligned}
$$

Ex 16

Reminder: given an operator $*$, we say that $*$ is:

- commutative if for any $x, y, x * y=y * x$.
- associative if for any $x, y, z,(x * y) * z=x *(y * z)$.
- idempotent if for any $x, x * x=x$.
- transitive if for any $x, y, z, x * y$ and $y * z$ implies $x * z$.

Idempotence

x	$x \Rightarrow x$	$x \Leftrightarrow x$
0	1	1
1	1	1

According to the truth table, \Rightarrow and \Leftrightarrow are not idempotent.

Communtativity

x	y	$x \Rightarrow y$	$y \Rightarrow x$	$x \Leftrightarrow y$	$y \Leftrightarrow x$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

According to the truth table, \Rightarrow is not commutative, but \Leftrightarrow is.

Associativity

x	y	z	$x \Rightarrow(y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$	$x \Leftrightarrow(y \Leftrightarrow z)$	$(x \Leftrightarrow y) \Leftrightarrow z$
0	0	0	1	0	0	0
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	1	1	0	0
1	0	0	1	1	1	1
1	0	1	1	1	0	0
1	1	0	0	0	0	0
1	1	1	1	1	1	1

According to the truth table, \Rightarrow is not associative but \Leftrightarrow is.

Transitivity

x	y	z	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow z$	$x \Leftrightarrow y$	$y \Leftrightarrow z$	$x \Leftrightarrow z$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	0
0	1	0	1	0	1	0	0	1
0	1	1	1	1	1	0	1	0
1	0	0	0	1	0	0	1	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	1	1	1	1

According to the truth table, \Rightarrow and \Leftrightarrow are transitive.

Ex 23

Transforming $\neg(a \Leftrightarrow b) \vee(b \wedge c) \Rightarrow c$ in DNF.

$$
\begin{aligned}
\neg(a \Leftrightarrow b) \vee(b \wedge c) \Rightarrow c & \equiv \neg((a \Rightarrow b) \wedge(b \Rightarrow a)) \vee(b \wedge c) \Rightarrow c \\
& \equiv \neg((\neg a \vee b) \wedge(\neg b \vee a)) \vee(b \wedge c) \Rightarrow c \\
& \equiv((\neg a \vee b) \wedge(\neg b \vee a) \wedge(\neg b \vee \neg c)) \vee c \\
& \equiv(((\neg a \wedge \neg b) \vee(b \wedge a)) \wedge(\neg b \vee \neg c)) \vee c \\
& \equiv(((\neg a \wedge \neg b) \vee(b \wedge a)) \vee c) \wedge(\neg b \vee \neg c \vee c) \\
& \equiv \neg a \wedge \neg b \vee a \wedge b \vee c
\end{aligned}
$$

Any model of this formula must respect one of the three following conditions:

- $a=1$ and $b=1$.
- $a=0$ and $b=0$.
- $c=1$.

Transforming $(a \Rightarrow b) \wedge(b \Rightarrow \neg a) \wedge(\neg a \Rightarrow b) \wedge(b \Rightarrow a)$ in DNF.

$$
\begin{aligned}
(a \Rightarrow b) \wedge(b \Rightarrow \neg a) \wedge(\neg a \Rightarrow b) \wedge(b \Rightarrow a) & \equiv(\neg a \vee b) \wedge(\neg b \vee \neg a) \wedge(a \vee b) \wedge(\neg b \vee a) \\
& \equiv \neg a \wedge a \\
& \equiv 0
\end{aligned}
$$

This formula is a contradiction, thus it has no model.

Ex 27

Notation: a : Aha is a Tame, b : Beeby is a Tame.
"Aha says: at least one of us is a Lame" We can represent this assertion (the fact that Aha says that one of them is a Lame) by:

$$
a \Leftrightarrow \neg a \vee \neg b
$$

. This formula is equivalent to $a \wedge \neg b$ (the simplification of the formula is left as an exercice for the reader). Hence, we conclude that Aha is a Tame, and Beeby is a Lame.
"Aha says: at most one of us is a Lame" We can represent this assertion by

$$
a \Leftrightarrow a \vee b
$$

, which is equivalent to $a \vee \neg b$. So we cannot conclude.
"Aha says: both of us are in the same tribe" This assertion is equivalent to $a \Leftrightarrow(a \Leftrightarrow b)$. We can reduce this formula to its normal form, b. So we conclude that we know that Beeby is a Tame. We cannot conclude for Aha.

