Exercise 1

Let $A=a \Rightarrow b \wedge c \vee \neg a \Leftrightarrow b$.
Corresponding strict formula: $((a \Rightarrow((b \wedge c) \vee \neg a)) \Leftrightarrow b)$
Corresponding tree:

Truth table:

a	b	c	$b \wedge c$	$\neg a$	$(b \wedge c) \vee \neg a$	$a \Rightarrow((b \wedge c) \vee \neg a)$	A
0	0	0	0	1	1	1	0
0	0	1	0	1	1	1	0
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1
1	1	0	0	0	0	0	0
1	1	1	1	0	1	1	1

Simplification into DNF:

$$
\begin{aligned}
A & \equiv(a \Rightarrow(b c+\bar{a})) \Leftrightarrow b \\
& \equiv(\bar{a}+b c+\bar{a}) \Leftrightarrow b \\
& \equiv(\bar{a}+b c) \Leftrightarrow b \\
& \equiv((\bar{a}+b c) \cdot b)+(\overline{(\bar{a}+b c)} \cdot \bar{b}) \\
& \equiv((\bar{a}+b c) \cdot b)+((a \cdot \overline{b c}) \cdot \bar{b}) \\
& \equiv((\bar{a}+b c) \cdot b)+(a \cdot(\bar{b}+\bar{c}) \cdot \bar{b}) \\
& \equiv(\bar{a} b+b c)+((a \bar{b}+a \bar{c}) \cdot \bar{b}) \\
& \equiv(\bar{a} b+b c)+((a \bar{b} \bar{b}+a \bar{c} \bar{b})) \\
& \equiv(\bar{a} b+b c)+(a \bar{b}+a \bar{c} \bar{b}) \\
& \equiv \bar{a} b+b c+a \bar{b}+a \bar{c} \bar{b}
\end{aligned}
$$

Simplification into CNF:

$$
\begin{aligned}
A \equiv & \bar{a} b+b c+a \bar{b}+a \bar{c} \bar{b} \\
\equiv & (\bar{a}+b+a+a) \cdot(\bar{a}+b+a+\bar{c}) \cdot(\bar{a}+b+a+\bar{b}) \\
& \cdot(\bar{a}+b+\bar{b}+a) \cdot(\bar{a}+b+\bar{b}+\bar{c}) \cdot(\bar{a}+b+\bar{b}+\bar{b}) \\
& \cdot(\bar{a}+c+a+a) \cdot(\bar{a}+c+a+\bar{c}) \cdot(\bar{a}+c+a+\bar{b}) \\
& \cdot(\bar{a}+c+\bar{b}+a) \cdot(\bar{a}+c+\bar{b}+\bar{c}) \cdot(\bar{a}+c+\bar{b}+\bar{b}) \\
& \cdot(b+b+a+a) \cdot(b+b+a+\bar{c}) \cdot(b+b+a+\bar{b}) \\
& \cdot(b+b+\bar{b}+a) \cdot(b+b+\bar{b}+\bar{c}) \cdot(b+b+\bar{b}+\bar{b}) \\
& \cdot(b+c+a+a) \cdot(b+c+a+\bar{c}) \cdot(b+c+a+\bar{b}) \\
& \cdot(b+c+\bar{b}+a) \cdot(b+c+\bar{b}+\bar{c}) \cdot(b+c+\bar{b}+\bar{b}) \\
\equiv & (c+\bar{a}+\bar{b}) \cdot(a+b)
\end{aligned}
$$

Exercise 2

We formalize the facts:

- e : The TD lecturer gives hard exercises;
- r : the students get better results;
- h : the students hate the TD lecturer.

We can then formalize the two hypotheses and transform them in products of clauses:

1. $e \Rightarrow r h \equiv \bar{e}+r h \equiv(\bar{e}+r) \cdot(\bar{e}+h)$
2. $h \Rightarrow e \equiv \bar{h}+e$

We also model the conclusion: $\bar{r} \Rightarrow \bar{e}+\bar{h} \equiv r+\bar{e}+\bar{h}$.
We transform the negation of the conclusion into a product of clauses as well:
$\overline{r+\bar{e}+\bar{h}} \equiv \overline{r+\bar{e}} h \equiv \bar{r} e h$
To prove that the reasoning is correct, we have to show that the conjunction of the hypotheses and of the negation of the conclusion is unsatisfiable.

Corresponding set of clauses: $\Gamma=\{\bar{e}+r, \bar{e}+h, e+h, \bar{r}, e, h\}$.
We can prove it using several methods: truth table, expression simplification (proving that it is equivalent to \perp), or propositional resolution. Any of these three methods was accepted.

Exercise 3

For any $n \in \mathbb{N}$, we define $\mathcal{H}(n)$: "Any strict formula of size n is also a priority formula".

Base case: Let A be a strict formula such that $|A|=0$. Then, by definition of strict formulae, we have:

- $A=\top$ or
- $A=\perp$ or
- $A=x$ with x a variable.

In any of these 3 cases, A is also a priority formula, so $\mathcal{H}(0)$ holds. We have proved the base case.

Heredity: Let $n \in \mathbb{N}$. We suppose that $\mathcal{H}(k)$ is true for any $k \leq n$. Let A be a strict formula such that $|A|=n+1$. Since $|A|>0$, there are two possibilities:

- $A=\neg B$, with B a strict formula. We then have $|B|=|A|-1=n$. By induction, B is also a priority formula. By definition of priority formulae, so is A.
- $A=(B \circ C)$, with B, C strict formulae and $\circ \in\{\vee, \wedge, \Rightarrow, \Leftrightarrow\}$. We then have $|B|+|C|=n$, with $|B| \geq 0$ and $|C| \geq 0$, so we have $|B| \leq n$ and $|C| \leq n$. By induction, B and C are priority formulae. By definition of priority formulae, $B \circ C$ is also a priority formulae, and $(B \circ C)$ as well. So A is a priority formula.

The heredity property holds. We can conclude by saying that any strict formula is also a priority formula.

