
Exercise 1

Let A = a ⇒ b ∧ c ∨ ¬a ⇔ b.
Corresponding strict formula: ((a ⇒ ((b ∧ c) ∨ ¬a)) ⇔ b)
Corresponding tree:

⇔

}}
⇒

~~ !!

b

a ∨

}}
∧

~~ !!

¬

��
b c a

Truth table:

a b c b ∧ c ¬a (b ∧ c) ∨ ¬a a ⇒ ((b ∧ c) ∨ ¬a) A
0 0 0 0 1 1 1 0
0 0 1 0 1 1 1 0
0 1 0 0 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 1 0 0 0 0 0 0
1 1 1 1 0 1 1 1

Simplification into DNF:

A ≡ (a ⇒ (bc+ ā)) ⇔ b

≡ (ā+ bc+ ā) ⇔ b

≡ (ā+ bc) ⇔ b

≡ ((ā+ bc) · b) + ((ā+ bc) · b̄)
≡ ((ā+ bc) · b) + ((a · bc) · b̄)
≡ ((ā+ bc) · b) + (a · (b̄+ c̄) · b̄)
≡ (āb+ bc) + ((ab̄+ ac̄) · b̄)
≡ (āb+ bc) + ((ab̄b̄+ ac̄b̄))

≡ (āb+ bc) + (ab̄+ ac̄b̄)

≡ āb+ bc+ ab̄+ ac̄b̄

1

Simplification into CNF:

A ≡ āb+ bc+ ab̄+ ac̄b̄

≡ (ā+ b+ a+ a) · (ā+ b+ a+ c̄) · (ā+ b+ a+ b̄)

·(ā+ b+ b̄+ a) · (ā+ b+ b̄+ c̄) · (ā+ b+ b̄+ b̄)

·(ā+ c+ a+ a) · (ā+ c+ a+ c̄) · (ā+ c+ a+ b̄)

·(ā+ c+ b̄+ a) · (ā+ c+ b̄+ c̄) · (ā+ c+ b̄+ b̄)

·(b+ b+ a+ a) · (b+ b+ a+ c̄) · (b+ b+ a+ b̄)

·(b+ b+ b̄+ a) · (b+ b+ b̄+ c̄) · (b+ b+ b̄+ b̄)

·(b+ c+ a+ a) · (b+ c+ a+ c̄) · (b+ c+ a+ b̄)

·(b+ c+ b̄+ a) · (b+ c+ b̄+ c̄) · (b+ c+ b̄+ b̄)

≡ (c+ ā+ b̄) · (a+ b)

Exercise 2

We formalize the facts:

• e: The TD lecturer gives hard exercises;

• r: the students get better results;

• h: the students hate the TD lecturer.

We can then formalize the two hypotheses and transform them in products
of clauses:

1. e ⇒ rh ≡ ē+ rh ≡ (ē+ r) · (ē+ h)

2. h ⇒ e ≡ h̄+ e

We also model the conclusion: r̄ ⇒ ē+ h̄ ≡ r + ē+ h̄.
We transform the negation of the conclusion into a product of clauses as

well:
r + ē+ h̄ ≡ r + ēh ≡ r̄eh
To prove that the reasoning is correct, we have to show that the conjunction

of the hypotheses and of the negation of the conclusion is unsatisfiable.
Corresponding set of clauses: Γ = {ē+ r, ē+ h, e+ h, r̄, e, h}.
We can prove it using several methods: truth table, expression simplification

(proving that it is equivalent to ⊥), or propositional resolution. Any of these
three methods was accepted.

2

Exercise 3

For any n ∈ N, we define H(n): ”Any strict formula of size n is also a priority
formula”.

Base case: Let A be a strict formula such that |A| = 0. Then, by definition
of strict formulae, we have:

• A = ⊤ or

• A = ⊥ or

• A = x with x a variable.

In any of these 3 cases, A is also a priority formula, so H(0) holds. We have
proved the base case.

Heredity: Let n ∈ N. We suppose that H(k) is true for any k ≤ n. Let A be
a strict formula such that |A| = n+1. Since |A| > 0, there are two possibilities:

• A = ¬B, with B a strict formula. We then have |B| = |A| − 1 = n. By
induction, B is also a priority formula. By definition of priority formulae,
so is A.

• A = (B ◦ C), with B,C strict formulae and ◦ ∈ {∨,∧,⇒,⇔}. We then
have |B| + |C| = n, with |B| ≥ 0 and |C| ≥ 0, so we have |B| ≤ n and
|C| ≤ n. By induction, B and C are priority formulae. By definition of
priority formulae, B ◦ C is also a priority formulae, and (B ◦ C) as well.
So A is a priority formula.

The heredity property holds. We can conclude by saying that any strict
formula is also a priority formula.

3

