Exercise 1

Let $A = a \Rightarrow b \land c \lor \neg a \Leftrightarrow b$.

Corresponding strict formula: $((a \Rightarrow ((b \land c) \lor \neg a)) \Leftrightarrow b)$ Corresponding tree:

Truth table:

a	b	c	$b \wedge c$	$\neg a$	$(b \wedge c) \vee \neg a$	$a \Rightarrow ((b \land c) \lor \neg a)$	A
0	0	0	0	1	1	1	0
0	0	1	0	1	1	1	0
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1
1	1	0	0	0	0	0	0
1	1	1	1	0	1	1	1

Simplification into DNF:

$$\begin{array}{rcl} A &\equiv& (a \Rightarrow (bc + \bar{a})) \Leftrightarrow b \\ &\equiv& (\bar{a} + bc + \bar{a}) \Leftrightarrow b \\ &\equiv& (\bar{a} + bc) \Leftrightarrow b \\ &\equiv& ((\bar{a} + bc) \cdot b) + (\overline{(\bar{a} + bc)} \cdot \bar{b}) \\ &\equiv& ((\bar{a} + bc) \cdot b) + ((a \cdot bc) \cdot \bar{b}) \\ &\equiv& ((\bar{a} + bc) \cdot b) + (a \cdot (\bar{b} + \bar{c}) \cdot \bar{b}) \\ &\equiv& (\bar{a}b + bc) + ((a\bar{b} + a\bar{c}) \cdot \bar{b}) \\ &\equiv& (\bar{a}b + bc) + ((a\bar{b}b + a\bar{c}\bar{b})) \\ &\equiv& (\bar{a}b + bc) + (a\bar{b} + a\bar{c}\bar{b}) \\ &\equiv& \bar{a}b + bc + a\bar{b} + a\bar{c}\bar{b} \end{array}$$

Simplification into CNF:

$$\begin{array}{rcl} A &\equiv& \bar{a}b + bc + ab + a\bar{c}b \\ &\equiv& (\bar{a} + b + a + a) \cdot (\bar{a} + b + a + \bar{c}) \cdot (\bar{a} + b + a + \bar{b}) \\ &\cdot (\bar{a} + b + \bar{b} + a) \cdot (\bar{a} + b + \bar{b} + \bar{c}) \cdot (\bar{a} + b + \bar{b} + \bar{b}) \\ &\cdot (\bar{a} + c + a + a) \cdot (\bar{a} + c + a + \bar{c}) \cdot (\bar{a} + c + a + \bar{b}) \\ &\cdot (\bar{a} + c + \bar{b} + a) \cdot (\bar{a} + c + \bar{b} + \bar{c}) \cdot (\bar{a} + c + \bar{b} + \bar{b}) \\ &\cdot (b + b + a + a) \cdot (b + b + a + \bar{c}) \cdot (b + b + a + \bar{b}) \\ &\cdot (b + b + \bar{b} + a) \cdot (b + b + \bar{b} + \bar{c}) \cdot (b + b + \bar{b} + \bar{b}) \\ &\cdot (b + c + a + a) \cdot (b + c + a + \bar{c}) \cdot (b + c + a + \bar{b}) \\ &\cdot (b + c + \bar{b} + a) \cdot (b + c + \bar{b} + \bar{c}) \cdot (b + c + a + \bar{b}) \\ &\cdot (b + c + \bar{b} + a) \cdot (b + c + \bar{b} + \bar{c}) \cdot (b + c + \bar{b} + \bar{b}) \\ &\equiv &(c + \bar{a} + \bar{b}) \cdot (a + b) \end{array}$$

Exercise 2

We formalize the facts:

- e: The TD lecturer gives hard exercises;
- r: the students get better results;
- *h*: the students hate the TD lecturer.

We can then formalize the two hypotheses and transform them in products of clauses:

1.
$$e \Rightarrow rh \equiv \bar{e} + rh \equiv (\bar{e} + r) \cdot (\bar{e} + h)$$

2.
$$h \Rightarrow e \equiv h + e$$

We also model the conclusion: $\bar{r} \Rightarrow \bar{e} + \bar{h} \equiv r + \bar{e} + \bar{h}$.

We transform the negation of the conclusion into a product of clauses as well:

 $\overline{r+\bar{e}}+\bar{h}\equiv\overline{r+\bar{e}}h\equiv\bar{r}eh$

To prove that the reasoning is correct, we have to show that the conjunction of the hypotheses and of the negation of the conclusion is unsatisfiable.

Corresponding set of clauses: $\Gamma = \{\bar{e} + r, \bar{e} + h, e + h, \bar{r}, e, h\}.$

We can prove it using several methods: truth table, expression simplification (proving that it is equivalent to \perp), or propositional resolution. Any of these three methods was accepted.

Exercise 3

For any $n \in \mathbb{N}$, we define $\mathcal{H}(n)$: "Any strict formula of size n is also a priority formula".

Base case: Let A be a strict formula such that |A| = 0. Then, by definition of strict formulae, we have:

- $\bullet \ A = \top \text{ or }$
- $A = \bot$ or
- A = x with x a variable.

In any of these 3 cases, A is also a priority formula, so $\mathcal{H}(0)$ holds. We have proved the base case.

Heredity: Let $n \in \mathbb{N}$. We suppose that $\mathcal{H}(k)$ is true for any $k \leq n$. Let A be a strict formula such that |A| = n + 1. Since |A| > 0, there are two possibilities:

- $A = \neg B$, with B a strict formula. We then have |B| = |A| 1 = n. By induction, B is also a priority formula. By definition of priority formulae, so is A.
- $A = (B \circ C)$, with B, C strict formulae and $\circ \in \{\lor, \land, \Rightarrow, \Leftrightarrow\}$. We then have |B| + |C| = n, with $|B| \ge 0$ and $|C| \ge 0$, so we have $|B| \le n$ and $|C| \le n$. By induction, B and C are priority formulae. By definition of priority formulae, $B \circ C$ is also a priority formulae, and $(B \circ C)$ as well. So A is a priority formula.

The heredity property holds. We can conclude by saying that any strict formula is also a priority formula.