Quick 1^{0} - INF432

(30 minutes) - Groupe MIN-int

Exercice 1 : Priorities

Let A be the following formula:

$$
\neg a \Rightarrow b \wedge c \Leftrightarrow \neg c \wedge a
$$

- Give the corresponding strict formula.
- Give the corresponding formula in boolean notation.
- Give the corresponding tree structure.

Remind : Booleans connectors by decreasing order of priority : $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$.

Exercice 2 : Consequence

Tonight there will be a big concert in Grenoble, and there could be three bands playing : the Pure Players, the Quantic Quintet and the Roaming Rebels.

- If the Pure Players are not playing, then the Quantic Quintet will play.
- If the Quantic Quintet play, then all three bands will play.
- If the Roaming Rebels play, then the Pure Players or the Quantic Quintet, at least one of them, will not play. Questions:
- Model the facts
- Can we conclude from these 3 facts that the Pure Players will play tonight? Justify.

Exercice 3 : Induction proof
For all formulae A and B, we have :
$-\top \equiv \perp \Rightarrow \perp$,
$-\neg A \equiv A \Rightarrow \perp$,
$-A \vee B \equiv \neg A \Rightarrow B$,
$-A \wedge B \equiv \neg(\neg A \vee \neg B)$,
$-A \Leftrightarrow B \equiv(A \Rightarrow B) \wedge(B \Rightarrow A)$.
Show by induction over the size of a formula that any formula ${ }^{1}$ can be written using only variables, \perp and \Rightarrow. Emphaze the base case, the induction hypothesis and the induction step.

Remind : The size of a formula A, denoted $|A|$, is recursively defined by :
$-|\top|=0$ and $|\perp|=0$.

- If A is a variable then $|A|=0$.
$-|\neg A|=1+|A|$.
$-|(A \circ B)|=|A|+|B|+1$, if \circ is one of the operations $\vee, \wedge, \Rightarrow, \Leftrightarrow$.

[^0]
[^0]: 1. Note that unnecessary parenthesis are omitted.
